Download this example
Download this example as a Jupyter Notebook or as a Python script.
Bath plate analysis#
This example uses PyAEDT to set up the TEAM 3 bath plate problem and solve it using the Maxwell 3D eddy current solver. # For more information on this problem, see this paper.
Keywords: Maxwell 3D, TEAM 3 bath plate
Perform imports and define constants#
Perform required imports.
[1]:
import os
import tempfile
import time
[2]:
import ansys.aedt.core
Define constants.
[3]:
AEDT_VERSION = "2024.2"
NUM_CORES = 4
NG_MODE = False # Open AEDT UI when it is launched.
Create temporary directory#
Create a temporary directory where downloaded data or dumped data can be stored. If you’d like to retrieve the project data for subsequent use, the temporary folder name is given by temp_folder.name
.
[4]:
temp_folder = tempfile.TemporaryDirectory(suffix=".ansys")
Launch AEDT and Maxwell 3D#
Create an instance of the Maxwell3d
class named m3d
by providing the project and design names, the solver, and the version.
[5]:
m3d = ansys.aedt.core.Maxwell3d(
project=os.path.join(temp_folder.name, "COMPUMAG.aedt"),
design="TEAM_3_Bath_Plate",
solution_type="EddyCurrent",
version=AEDT_VERSION,
non_graphical=NG_MODE,
new_desktop=True,
)
uom = m3d.modeler.model_units = "mm"
PyAEDT INFO: Python version 3.10.11 (tags/v3.10.11:7d4cc5a, Apr 5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]
PyAEDT INFO: PyAEDT version 0.12.dev0.
PyAEDT INFO: Initializing new Desktop session.
PyAEDT INFO: Log on console is enabled.
PyAEDT INFO: Log on file C:\Users\ansys\AppData\Local\Temp\pyaedt_ansys_fb62a068-9a3d-4940-900b-27c3cb137494.log is enabled.
PyAEDT INFO: Log on AEDT is enabled.
PyAEDT INFO: Debug logger is disabled. PyAEDT methods will not be logged.
PyAEDT INFO: Launching PyAEDT with gRPC plugin.
PyAEDT INFO: New AEDT session is starting on gRPC port 56967
PyAEDT INFO: AEDT installation Path C:\Program Files\AnsysEM\v242\Win64
PyAEDT INFO: Ansoft.ElectronicsDesktop.2024.2 version started with process ID 4312.
PyAEDT INFO: Project COMPUMAG has been created.
PyAEDT INFO: Added design 'TEAM_3_Bath_Plate' of type Maxwell 3D.
PyAEDT INFO: Aedt Objects correctly read
PyAEDT INFO: Modeler class has been initialized! Elapsed time: 0m 1sec
Add variable#
Add a design variable named Coil_Position
to use later to adjust the position of the coil.
[6]:
Coil_Position = -20
m3d["Coil_Position"] = str(Coil_Position) + m3d.modeler.model_units
Add material#
Add a material named team3_aluminium
for the ladder plate.
[7]:
mat = m3d.materials.add_material(name="team3_aluminium")
mat.conductivity = 32780000
PyAEDT INFO: Materials class has been initialized! Elapsed time: 0m 0sec
PyAEDT INFO: Adding new material to the Project Library: team3_aluminium
PyAEDT INFO: Material has been added in Desktop.
Draw background region#
Draw a background region that uses the default properties for an air region.
[8]:
m3d.modeler.create_air_region(
x_pos=100, y_pos=100, z_pos=100, x_neg=100, y_neg=100, z_neg=100
)
[8]:
<ansys.aedt.core.modeler.cad.object_3d.Object3d at 0x1cbbd8b3100>
Draw ladder plate and assign material#
Draw a ladder plate and assign it the newly created material team3_aluminium
.
[9]:
m3d.modeler.create_box(
origin=[-30, -55, 0],
sizes=[60, 110, -6.35],
name="LadderPlate",
material="team3_aluminium",
)
m3d.modeler.create_box(origin=[-20, -35, 0], sizes=[40, 30, -6.35], name="CutoutTool1")
m3d.modeler.create_box(origin=[-20, 5, 0], sizes=[40, 30, -6.35], name="CutoutTool2")
m3d.modeler.subtract(
blank_list="LadderPlate",
tool_list=["CutoutTool1", "CutoutTool2"],
keep_originals=False,
)
PyAEDT INFO: Parsing design objects. This operation can take time
PyAEDT INFO: Parsing C:/Users/ansys/AppData/Local/Temp/tmperf1b5j7.ansys/COMPUMAG.aedt.
PyAEDT INFO: File C:/Users/ansys/AppData/Local/Temp/tmperf1b5j7.ansys/COMPUMAG.aedt correctly loaded. Elapsed time: 0m 0sec
PyAEDT INFO: aedt file load time 0.0
PyAEDT INFO: 3D Modeler objects parsed. Elapsed time: 0m 0sec
[9]:
True
Add mesh refinement to ladder plate#
Note: You can uncomment the following code.
m3d.mesh.assign_length_mesh( assignment=”LadderPlate”, maximum_length=3, maximum_elements=None, name=”Ladder_Mesh”, )
Draw search coil and assign excitation#
Draw a search coil and assign it a stranded
current excitation. The stranded type forces the current density to be constant in the coil.
[10]:
m3d.modeler.create_cylinder(
orientation="Z",
origin=[0, "Coil_Position", 15],
radius=40,
height=20,
name="SearchCoil",
material="copper",
)
m3d.modeler.create_cylinder(
orientation="Z",
origin=[0, "Coil_Position", 15],
radius=20,
height=20,
name="Bore",
material="copper",
)
m3d.modeler.subtract(blank_list="SearchCoil", tool_list="Bore", keep_originals=False)
m3d.modeler.section(assignment="SearchCoil", plane="YZ")
m3d.modeler.separate_bodies(assignment="SearchCoil_Section1")
m3d.modeler.delete(assignment="SearchCoil_Section1_Separate1")
m3d.assign_current(
assignment=["SearchCoil_Section1"],
amplitude=1260,
solid=False,
name="SearchCoil_Excitation",
)
PyAEDT INFO: Deleted 1 Objects: SearchCoil_Section1_Separate1.
[10]:
<ansys.aedt.core.modules.boundary.BoundaryObject at 0x1cbcd8963e0>
Draw a line for plotting Bz#
Draw a line for plotting Bz later. Bz is the Z component of the flux density. The following code also adds a small diameter cylinder to refine the mesh locally around the line.
[11]:
line_points = [["0mm", "-55mm", "0.5mm"], ["0mm", "55mm", "0.5mm"]]
m3d.modeler.create_polyline(points=line_points, name="Line_AB")
poly = m3d.modeler.create_polyline(points=line_points, name="Line_AB_MeshRefinement")
poly.set_crosssection_properties(type="Circle", width="0.5mm")
[11]:
<ansys.aedt.core.modeler.cad.object_3d.Object3d at 0x1cbd0f0ece0>
Add Maxwell 3D setup#
Add a Maxwell 3D setup with frequency points at 50 Hz and 200 Hz.
[12]:
setup = m3d.create_setup(name="Setup1")
setup.props["Frequency"] = "200Hz"
setup.props["HasSweepSetup"] = True
setup.props["MaximumPasses"] = 1
setup.add_eddy_current_sweep(
range_type="LinearStep", start=50, end=200, count=150, clear=True
)
[12]:
True
Adjust eddy effects#
Adjust eddy effects for the ladder plate and the search coil. The setting for eddy effect is ignored for the stranded conductor type used in the search coil.
[13]:
m3d.eddy_effects_on(
assignment=["LadderPlate"],
enable_eddy_effects=True,
enable_displacement_current=True,
)
m3d.eddy_effects_on(
assignment=["SearchCoil"],
enable_eddy_effects=False,
enable_displacement_current=True,
)
[13]:
True
Add linear parametric sweep#
Add a linear parametric sweep for the two coil positions.
[14]:
sweep_name = "CoilSweep"
param = m3d.parametrics.add(
variable="Coil_Position",
start_point=-20,
end_point=0,
step=20,
variation_type="LinearStep",
name=sweep_name,
)
param["SaveFields"] = True
param["CopyMesh"] = False
param["SolveWithCopiedMeshOnly"] = True
Solve parametric sweep#
Solve the parametric sweep directly so that results of all variations are available.
[15]:
m3d.save_project()
param.analyze(cores=NUM_CORES)
PyAEDT INFO: Project COMPUMAG Saved correctly
PyAEDT INFO: Key Desktop/ActiveDSOConfigurations/Maxwell 3D correctly changed.
PyAEDT INFO: Solving Optimetrics
PyAEDT INFO: Key Desktop/ActiveDSOConfigurations/Maxwell 3D correctly changed.
PyAEDT INFO: Design setup CoilSweep solved correctly in 0.0h 1.0m 59.0s
[15]:
True
Create expression for Bz#
Create an expression for Bz using PyAEDT advanced fields calculator.
[16]:
bz = {
"name": "Bz",
"description": "Z component of B",
"design_type": ["Maxwell 3D"],
"fields_type": ["Fields"],
"primary_sweep": "Distance",
"assignment": "",
"assignment_type": ["Line"],
"operations": [
"NameOfExpression('<Bx,By,Bz>')",
"Operation('ScalarZ')",
"Scalar_Constant(1000)",
"Operation('*')",
"Operation('Smooth')",
],
"report": ["Field_3D"],
}
m3d.post.fields_calculator.add_expression(bz, None)
PyAEDT INFO: Parsing C:/Users/ansys/AppData/Local/Temp/tmperf1b5j7.ansys/COMPUMAG.aedt.
PyAEDT INFO: File C:/Users/ansys/AppData/Local/Temp/tmperf1b5j7.ansys/COMPUMAG.aedt correctly loaded. Elapsed time: 0m 0sec
PyAEDT INFO: aedt file load time 0.031243562698364258
PyAEDT INFO: PostProcessor class has been initialized! Elapsed time: 0m 0sec
PyAEDT INFO: Post class has been initialized! Elapsed time: 0m 0sec
[16]:
'Bz'
Plot mag(Bz) as a function of frequency#
Plot mag(Bz) as a function of frequency for both coil positions.
[17]:
variations = {
"Distance": ["All"],
"Freq": ["All"],
"Phase": ["0deg"],
"Coil_Position": ["All"],
}
m3d.post.create_report(
expressions="mag(Bz)",
variations=variations,
primary_sweep_variable="Distance",
report_category="Fields",
context="Line_AB",
plot_name="mag(Bz) Along 'Line_AB' Coil",
)
[17]:
<ansys.aedt.core.visualization.report.field.Fields at 0x1cbbd8b36d0>
Get simulation results from a solved setup#
Get simulation results from a solved setup as a SolutionData
object.
[18]:
solutions = m3d.post.get_solution_data(
expressions="mag(Bz)",
report_category="Fields",
context="Line_AB",
variations=variations,
primary_sweep_variable="Distance",
)
PyAEDT INFO: Solution Data Correctly Loaded.
Set up sweep value and plot solution#
[19]:
solutions.active_variation["Coil_Position"] = -0.02
solutions.plot()
[19]:
Change sweep value and plot solution#
Change the sweep value and plot the solution again. Uncomment to show plots.
[20]:
solutions.active_variation["Coil_Position"] = 0
# solutions.plot()
Plot induced current density on surface of ladder plate#
Plot the induced current density, "Mag_J"
, on the surface of the ladder plate.
[21]:
ladder_plate = m3d.modeler.objects_by_name["LadderPlate"]
intrinsics = {"Freq": "50Hz", "Phase": "0deg"}
m3d.post.create_fieldplot_surface(
assignment=ladder_plate.faces,
quantity="Mag_J",
intrinsics=intrinsics,
plot_name="Mag_J",
)
[21]:
<ansys.aedt.core.visualization.post.field_data.FieldPlot at 0x1cbd0f0e6e0>
Release AEDT#
[22]:
m3d.save_project()
m3d.release_desktop()
# Wait 3 seconds to allow AEDT to shut down before cleaning the temporary directory.
time.sleep(3)
PyAEDT INFO: Project COMPUMAG Saved correctly
PyAEDT INFO: Desktop has been released and closed.
Clean up#
All project files are saved in the folder temp_folder.name
. If you’ve run this example as a Jupyter notebook, you can retrieve those project files. The following cell removes all temporary files, including the project folder.
[23]:
temp_folder.cleanup()
Download this example
Download this example as a Jupyter Notebook or as a Python script.